MNIST

Goal

Predict category of images.

Data

  • X: digit image of 28 * 28 pixels.
  • 1-d 784 pixel vector.
  • y: the value of image (0~9)
label,pixel0,...,pixel783
1    ,     0,...,0

Plan

  • Load data
  • make X to (784, m)
  • make y to (10, m) using one hot encoder.
  • run session and check feed
  • Create model
  • define forward model.
  • define optimize model.
    • define loss function.
  • Train data.
  • optimize loss function.
  • Measure performance

Model

Linear regression

Forward Model

$f(x) = W \cdot X + b$ - X: (784, m), W (1, 784), b (1, 1)

Loss

$ H_{q}(p) = \sum_{x} q(x) *\log_{2} \frac{1}{\log p(x)} $ - Cross-Entroy: Average length of message from q(x) using code for p(x)

Cost

$ cost(\theta) = \sum_{i=0}^{M}loss(x^{(i)})$

Resource